If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-32y+28=0
a = 4; b = -32; c = +28;
Δ = b2-4ac
Δ = -322-4·4·28
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-24}{2*4}=\frac{8}{8} =1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+24}{2*4}=\frac{56}{8} =7 $
| 6y+9-y=7y-2(y-1) | | 2x+12=(6+12)+(18)/2 | | 280+10x=(8-x)*10+56 | | 11+2m+7+m=90 | | p-11/2=3 | | 1=-8u+5(u+5) | | 2x+10=6x+12+18/2 | | -2/5+2/3x=-1/4 | | 11w=-44 | | 4x/6+2x/7=3+3x/4 | | 10=3+n+4 | | 11x/12=4x/11+73 | | (6x+12)+(18)/2=2x+10 | | 7+3(2g+-6)=-20 | | 10/p=8/15 | | -v-5v=-8v-4 | | f/10=-1 | | f/10=1 | | 15x-7=6x-25 | | n+7+5n=-5 | | (x+20)+(x+10)+90=180 | | 4y-3/y^2+1=4y/4 | | w/4=w/3+2 | | 0.42x=48.3 | | v+1+4=-1 | | 8p-p=-2p+9 | | 8=-7x+6 | | 28+19n=35+12n | | (2-3i)(2-3i)=0 | | y=910 | | (2x)+(3x+10)/2=15 | | 7-14m=12m-5 |